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i. Introduction. The rise of a liquid drop in a different medium is a very complicated 
problem because it is necessary to determine the hydrodynamic characteristics inside and out- 
side the drop and also the drop shape, i.e., the interface between the two different media. 
The rise velocity depends significantly on the physical properties of the two media and also 
on the structure of the flow. Hence it is not as straightforward to transform to the equiv- 
alent (and usually simpler) problem of flow around a stationary drop as in the case of a 
motion of a drop with known shape and given velocity. The steady rise of a drop must there- 
fore be distinguished from motion with a given constant velocity, such as motion of a solid 
body. As a simple example, a solid ball rises (sinks) in a liquid with a certain velocity 
and its motion can be determined for different values of the velocity. Then rise occurs 
for a certain value of the parameter characterizing motion of the body with a constant veloc- 
ity. The situation becomes more complicated if the shape of the body can change as a re- 
sult of the hydrodynamics of the process. 

The mathematical description of the rise of a liquid drop in a different liquid is based 
on the solution of the Navier-Stokes equations inside and outside the drop subject to cer- 
tain matching conditions on the boundary between the media. The earlier papers [i, 2] con- 
sidered the solution in the Stokes approximation. In this case the drop is a sphere and a 
Hill vortex exists inside the drop. Deformation of a drop was studied theoretically in [3] 
in the Oseen approximation by matching asymptotic expansions. The shape of the drop was 
found to be almost spherical. Approximate solutions for large Reynolds numbers in the form 
of a series ofpolynomials were obtained in [4, 5] for spherical drops using the Bubnov-Galer- 
kin method. Because the Navier-Stokes equations and the boundary conditions are nonlinear, 
a complete solution to the problem can be found only numerically. The direct numerical solu- 
tion of the complete Navier-Stokes equations was considered in [6, 7] and the flow was de- 
termined for intermediate values of the hydrodynamic parameters. A more complete review of 
the literature is given in [8]. All of the theoretical solutions mentioned above are dif- 
ferent asymptotic limits of small or large values of the hydrodynamic parameters, or else 
assume that the drop is only slightly deformable, or consider steady flow past the drop [6]. 
Hence the correspondence between these solutions and the original problem of the rise of a 
drop requires further study. For spherical drops this question is easily resolved (the flow 
is steady when the drag and buoyancy forces are equal), but for deformed drops the problem 
is more complicated. The steady rise of a drop in a vertical tube was solved in [9] using 
the algorithm for the numerical solution of the rise of a bubble in a viscous liquid. In the 
present paper we study the flow inside and outside the drop and its effect on the rise of a 
drop in an infinite liquid for intermediate values of the hydrodynamic parameters. The dif- 
ferent flow regimes are discussed and the calculated results are compared with the limiting 
cases of a very viscous drop (a solid particle) and a bubble. 

2. Statement of the Problem and Dimensional Analysis. A liquid drop of density Pl and 
kinematic viscosity ~i moves in a liquid at rest with density P2 and kinematic viscosity v 2, 
The acceleration of gravity g is directed downward. If Pl = P2 the drop is in equilibrium, 
for Pl < P2 it rises, and for 01 > P2 it sinks. In any case one expects steady motion, 
since the buoyancy force and the drag force act in opposite directions. Since the volume 
of the drop is constant (and hence the buoyancy force is constant), eventually the drag force 
will become comparable in magnitude to the buoyancy force. If the shape of the drop and the 
nature of the flow do not change significantly, then we speak of steady rise (fall) with 
velocity U, which is determined by the entire process. 

We assume rectangular coordinates (xl, x2, x~) with the origin!O in the external liquid. 
The Navier-Stokes equations can be written in the form 

aui/Ot-}-uivu~-~(I/pi)v(pi-~pigx3) = ~ A u  i, d i v u i  = 0 ( 2 . 1 )  
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(i = I, 2 refers to the liquids inside and outside the drop, the ui are the velocity vectors, 
and the Pi are the pressures). 

The boundary conditions are specified as follows. On the surface F of the drop [F(xl, 
x 2, x 3, t) = 0] the velocities and tangential stresses in the two liquids must be equal, 
while the difference in the normal stresses must be equal to the capillary pressure: 

ul  = u~; ( 2 . 2 )  

01vl,Sln = 9~vf~Sfn; ( 2 . 3 )  

P l  - -  291vlnSln - -  P2 2c 2P~v2nS2n ~ e K  - -  ~ a p +  p ~ .  ( 2 . 4 )  

H e r e  o i s  t h e  s u r f a c e  t e n s i o n  on t h e  i n t e r f a c e ;  *, n a r e  u n i t  v e c t o r s  t a n g e n t  and  n o r m a l  t o  
F ;  S~J = (Ou~/Oxj+ O~/Ox~)/2 i s  t h e  d e f o r m a t i o n  r a t e  t e n s o r ;  K i s  t h e  c u r v a t u r e  o f  t h e  s u r f a c e  
r .  The  s t r e s s  t e n s o r  i s  T i = - p i  I + 2 P i ~ i S i  . I n  a d d i t i o n ,  we m u s t  h a v e  t h e  k i n e m a t i c  c o n d i -  
t i o n  

OF/Or + u i v  F = O. ( 2 . 5 )  

At infinity the liquid is assumed to be at rest: 

uf-+0when x-->oo. (2.6) 

The problem (2.1)-(2.6) is unsteady and describes the rise of the drop under the force 
of gravity. It is required to determine ul, uf, Pl, Pf, andF. In the limit of steady rise (if 
it exists) 0f/0t-+const = U is the rise velocity of the drop. 

The conditions (2.2) and (2.3) ensure the continuity of the velocities and tangential 
stresses across the interface; (2.4) implies that the discontinuity in the normal stress is 
equal to the capillary pressure. In equilibrium (Pl = P2 or g = 0) it follows from (2.4) 
that the surface is a sphere and the pressure Pcap inside the drop is not arbitrary, but is 
determined in terms of the radius a of the drop by (2.4), which takes the form 

PoC-  p ~ = 2~/~. ( 2 . 7 )  

It follows from (2.4) and (2.7) that the solution of the problem depends on the dif- 
ference (Pcap - P~), where (Pcap - P~) and a are not independent if the two media are speci- 
fied. Hence (2.1)-(2.6) involve seven independent dimensional parameters: Pl, vl, Pf, v~, 
o, g, and a. It follows from dimensional analysis that the solution of (2.1)-(2.6) is deter- 
mined by four independent dimensionless parameters. 

3. Method of Solution. For steady-state motion (2.1)-(2.6) simplify and become inde- 
pendent of time in a coordinate system moving with the drop. In this coordinate system the 
drop is at rest and the liquid flows around it. At an infinite distance from the drop the 
velocity of the liquid is constant and equal to the rise velocity U. The time derivatives 
vanish in (2.1) and (2.5). We consider the axisymmetric case. It is convenient to intro- 
duce spherical coordinates and to transform from the variables u~ and Pi to the stream func- 
tions @i and vorticities mi" Then the number of unknown functions is reduced to four and we 
obtain four equations of the elliptic type for the functions @i, @2, mz, m2 and an ordinary 
differential equation for the boundary function F [9]. As mentioned above, the problem in- 
volves four independent dimensionless parameters. Different parameters are obtained, depend- 
ing on the method used to make the original equations dimensionless. Taking a and U as the 
units of length and velocity, and transforming to dimensionless equations in the usual way 
[9, i0], we obtain B e t =  U2a/vl, Re~ ~ U2a/v2 (the Reynolds numbers of the internal and exter- 
nal flows), We = pfU22a/~ (the Weber number), p = Pl/P2 (the ratio of the densities), Fr = 
U~/ge (the Froude number), and Pd = (Pcap - p~)fa/o. 

The parameter p determines the process: the drop rises for p < 1 and sinks for p > i; 
Re I and Re~ characterize the hydrodynamic properties of the liquids; We corresponds to de- 
formation of the surface; Fr and Pd must be determined simultaneously with the flow functions 
(as in [I0], for example) from the conditions for steady flow and constancy of the volume of 
the drop. 

In the present paper we assume p = 0.1 for two reasons. First, for certain values of 
Re I the results can be compared to calcualtions for a bubble [10, ii]. Second, this case 
is important in itself as it models the rise of gas bubbles. When We = 0 the condition 
(2.4) gives K = Pd for any Re I and Ref, i.e., the curvature of the surface is constant and 
therefore the surface is a sphere whose radius R 0 is given by (Pcap --Pm); then 2/R0 = (Pcap -- 
po)fa/o. The quantity (Pcap -- p=)is determined from the condition that the volume of the drop is a 
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We choose this parameter such that R 0 ~ 2. 

Fig. 1 

This corresponds to introducing the 
unit of length s = o/2(Pcap - p~) in place of a (for a sphere s = a/2 and the parameters 
Rel, Re2, We, and Fr are easily redefined in terms of s Calculations for deformed drops 
are carried out for fixed Re I and Re 2 and different values of the Weber number with a step- 
size ~We, beginning with We = 0 (the algorithm is discussed in [9]). For small Re~ the 
solution can be compared with the result for flow around a solid sphere. 

The large number of independent parameters complicates the interpretation of the numeri- 
cal results and comparison with experiment. We use the parameters R~ = ~(~p~g)~/~, Rv = a/(v~/g)1(~ 
In the Ro, Rv plane the external liquid is represented as a straight line, since (R~/R~)6= 
p~gv~/o3=M (M is the Morton number of the external medium [ii]). By plotting the basic 
parameter Fr on the Ro, Rv plane, the effect of the liquid making up the drop on its rise in 
the external liquid can be determined for different values of Re I, Re2,,and We. Tlle param- 
eters are related to one another by the equations 

[ P j ~  2We ~ = = = - -  ( 3 .  I )  

4. Rise of Spherical and Slightly Deformed Drops. For We = 0 we hava a spherical drop 
with R 0 = 2 for any Rel, Re 2. The boundary condition (2.4) is satisfied exactly, and the 
flow inside and outside the drop is found by solving the problem of a liquid flowing around 
a sphere. The parameter Fr is computed from the condition for steady motion, i.e.~ the drag 
force and buoyancy force on the drop are equal. Since the drag coefficient Cd is a basic 
hydrodynamic characteristic of a body moving in a fluid, we compute Cd for a rising drop: 
Cd = (p2--pl)Vg/(p2U2/2)i(na 2) = (l--pl/p~)8~Fr. It differs from Cd of a bubble [I0] by the factor 
in parentheses due to the nonzero density of a drop. Here V is the volume. The usual value 
of Cd for a bubble is obtained by putting p l/p2 = O. 

The calculated values of Cd for different Rel, Re 2 (R o = 0.i) are given in Table i for 
spherical drops. The values of Cd for Re I = 0.4 are within 9% of the values for flow around 
a solid sphere [13] for R%~i00~. At Re 2 = 200 the difference is 27%. We note that Cd is 
larger for a drop than for a solid sphere for Re 2 = 100, 200. The flow in the external 
liquid is continuous up to Re = 200 but for Re 2 = 100 and 200 there is a region of secondary 
flow behind the sphere which does not directly touch the surface of the drop (Fig. i, Re I = 
0.4, Re2 = 200, Fr = 2.1; below: lines of constant stream function, above: the velocity 
field). Inside the drop and within the wake there are weak vortices rotating in the same 
direction. The local maxima of the stream function are 0.03 and 0.02, respectively. The 
external flow is the source of the vortex motion. The vortex inside the drop is induced by 
friction on the interface, while the external vortex is the result of the slowing of the 
liquid behind the drop. There is no separation of the flow from the surface, as in the case 
of a solid sphere [13], because the flows from the two vortices in the same direction must 
be matched on the surface of the drop. It is impossible to do this directly, since the veloc- 
ity vector must he continuous across the surface. In order for the boundary of the secondary 
flow to pass out from the surface of the drop, we must have a third "buffer" vortex between 
the two vortices described above. This is possible if the vortex motion behind the drop is 
sufficiently strong, which can spread out the flow across part of the boundary and thereby 
generate a new counter flow inside the back of the drop. This process indeed occurs for suf- 
ficiently large We. The number of iterations required to compute the flow functions dramati- 
cally increases when We = 0.46 (Re I = 0.4, Re 2 = 200). Upon generation of a new vortex in- 
side the drop the vortex outside the drop begins to move away, and a new vortex is formed, 
directly touching the surface of the drop. It increases in size until the flow again be- 
comes steady (triangles in Fig. 3) or else the process will be unsteady. There is a jump in 
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the drag coefficient: Cd = 0.69, which is 16% smaller than Cd for a solid sphere [13] (before 
the transition Cd for the drop was 27% larger). The pressure over the outer surface of the 
drop varies significantly over the boundary, i.e., the force acting on the drop varies 
strongly in both magnitude and direction. This discussion obviously does not describe the 
evolution of the process in physical time, since it corresponds to evolution with respect to 
a fictitious time. But since one can often observe the rise of a light sphere in the form of 
a series of separate jerks, it gives indirect information on the possible processes. 

Large Re I corresponds to the case when the drop is the less viscous medium. We see from 
Table i that for Re I = 60 the drag coefficient for Re 2 > i differs from Cd for a bubble by 
8-12%. We see that for Re 2 = 12 the difference in Cd for Re I = 40 and i00 is very slight. 
Figure 2 illustrates the flow for Re I = 60, Re 2 = i00, We = 0.88 (Fr = 4.1, R o = 0.33, R~ = 
8.46). The drop is slightly deformed and there is a strong Hill's vortex inside, whose 
center is near the boundary of the drop. The maximum values of the fluid velocity inside and 
outside the drop are approximately the same. The ratio of the velocities remains approxi- 
mately the same for smaller values of Re 2 and We. As we increase Re I at fixed Re 2, the flow 
inside the drop changes from that shown in Fig. 2 to that shown in Fig. i, where the liquid 
inside the drop is practically at rest. The stagnant region behind the drop disappears for 
Re I = 20 for slightly deformed drops. 

Calculations for Re~l show that Cd is approximately independent of Re I. The flow 
is independent of the medium making up the drop. This is not surprising, since the Hill's 
vortex is an exact solution of the Navier-Stokes equations for small Re2, independent of 
Re I [13]. For Re I = 0.4, Re 2 = 0.i, We = 0.0004 (Fr = 0.009, R o = 0.15, R v = 0.65, M = 1.4. 
10 -4 , M d = 10 -9 ) there is strong vortex motion inside the drop. These solutions correspond 
to rise of a liquid drop whose Morton number M d is smaller than M for the external medium. 
The ratio M is the same as for Re 2 > i, Re I > 20 (when Re I = 0.4 the value of M d is larger 
than M of the external medium). For fixed Re 2, the value of M d varies by more than seven 
orders of magnitude for Re I = 0.4-60. For example, for water M = i0 -11, for mineral oil 
M = 0.01, and for syrup (Bond) M z 106 [14]. 

5. Rise of Deformed Drops. As We increases the drop is deformed and it begins to 
flatten out in the plane perpendicular to its motion. The change in surface area reaches 3% 
(the ratio of the transverse and longitudinal dimensions of the drop) at We = 0.24 for dif- 
ferent Re I and Re 2 ~ i. This is region I in the Ro, Rv plane (Fig. 3). For Re 2 ~ i the 
flow and the deformation of the boundary are constant for 0.4 ~Re1~<60, but for larger Re 2 
there are significant differences. For example, the upper end of the straight line corre- 
sponding to the boundary of region I is shifted slightly to the right for Re I = 0.4 and We 
increases very slightly. 

The dashed lines in Fig. 3 show the calculations for different We and fixed Re I and 
Re2: i) Re I = 0.4, Re 2 = 0.i (identical to Re I = 60, Re 2 = 0.i); 2) 0.4 and i (practically 
identical to Re I = 60, Re 2 = i); 3) 40 and 12, 4) 0.4 and 12; 5) 60 and 40; 6) 60 and 60; 7) 
0.4 and 40; 8) 60 and I00; 9) 0.4 and 60; i0) 0.4 and i00; ii) 20 and 200; 12) 0.4 and 200. 
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The numbers labelling the points are the values of Fr obtained from the solution of the prob- 
lem. We note the difference between this diagram and those of [9, ii], showing lines of 
constant Fr. The existence an additional independent parameter (the medium making up the 
drop) means that a large number of calculations are necessary to construct diagrams for a 
drop with a given M d. The diagram of Fig. 3 obviously cannot easily be used to construct 
the dependence of the rise velocity of the drop on its radius in different liquids, but it 
shows the main effects of the rise process. For example, for fixed Re 2 > 1 and different 
Re I points corresponding to identical values of R o approach one another (curves 3 and 4; 5 and 
7; 6 and 9; 8 and i0) as R o (and hence We) increases. The values of Fr also approach one 
another. This shows that the rise velocities of drops of the same size become equal in spite 
of the fact that the values of M d corresponding to these curves differ by more than seven 
orders of magnitude. The shape of the drop changes from a sphere to an oblate spheroid on 
the right boundary of region II, shown by the broken line. The flow changes markedly. 

For example, when R % ~ 1  the curves corresponding to Re I = 0.4 and 60 are practically 
identical. The drop differs only slightly from a sphere and distortion in the back of the 
drop (flattening) and the appearance of a "corner" on the surface only become noticeable 
for R a > i. For Re I = 0.4, Re 2 = i, We = 1.62 (R a = 2.94, R v = 1.39, M = 91, M d = 3.56) a 
strong vortex exists inside the drop and the maximum velocity is comparable to the rise 
velocity. The drag coefficient is the same as for a solid sphere, while the flow inside 
the drop corresponds more to the case of a gas bubble (in this case M d < M). The pressure 
P2 on the surface resulting from the external flow increases monotonically as we move from 
the front to the back of the drop. For larger We (even for We = 1.6204, Ro = 3.18) there 
is a change in the flow. The strength of the vortex inside the drop increases by nearly 
a factor of two and the velocity profile of the external flow becomes nonmonotonic over a 
cross section. The pressure is nonuniform near the corner, the boundary itself becomes 
wavy, Fr drops to 0.08, M = 106.6, M d = 4.16. The boundary then oscillates and the flow be- 
comes unsteady. 

For Re2~ 0.i the flow characteristics are similar to the case Re 2 = i, but t]ae drop is 
nearly spherical. When Rang steady flow does not exist and the boundary at the back of the 
drop oscillates from iteration to iteration in the calculation of the surface. 

For Re 2 > i the rise velocity depends significantly on the medium making up the drop. 
With increasing deformation (increasing We) the dependence on the medium diminishes and prac- 
tically disappears beyond a certain value of We (We = 3.5-4.2 for Re 2 = 12-100). The in- 
clined part of the broken line separating regions II and III in Fig. 3 corresponds to We = 
4-4.5. On the boundary either a turbulent wake appears behind the drop (for Re1~40 ) or the 
boundary is wavy at the back of the drop (Fig. 4, Re I = 40, Re 2 = 12, We = 6.1, Fr = 0.45, 
R a = 2.6, R v = 4.3, M = 0.049, M d = 3.9.10-7). The flow passing around the drop is contin- 
uous and there is a strong vortex inside the drop whose center is near the drop boundary and 
whose velocity distribution is practically uniform over the drop cross section and much 
smaller than the rise velocity. With further increase of We the surface waviness is ampli- 
fied and in the trough near the edge there is a stagnant zone (similar to what happens in 
the case of a bubble, see Fig. 3b of [ii]; the external medium and the drop size are approxi- 
mately the same). However, for a drop a broad turbulent wake does not form behind the drop, 
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as in the case of a bubble. The boundary near the back of the drop oscillates from iteration 
to iteration with further increase in We. 

The solution for Re I = 0.4, Re 2 = 12 has the symmetric form of an oblate spheroid up to 
We = 3.4 (R o = 1.9). Even for We as small as 3.48 the number of iterations required to find 
the flow functions increases markedly and the surface of the drop becomes wavy (Fig. 5, Fr = 
0.48, R o = 1.91, Rv = 4.22, M = 0.0086, M d = 6.2) and steady flow is not possible. For large 
Re 2 the dependence of the drop deformation on We is similar up to We ~ 3.45. For small Re l 
the drop has a flatter leading edge and becomes wedge-shaped. The flow is shown in Fig. 6 
for Re I = 0.5, Re 2 = 45, We = 3.85 (Fr = I.i, R o = 1.32, R~ = 7.6, M = 2.6.10 -5 , M d = 2,6). 
Results for larger values of We could not be obtained: the surface of the back of the drop 
oscillated from iteration to iteration in the calculation of surface shape. For large Re I 
the drop shape is symmetric up to We = 3.45, becomes asymmetric for larger We, and beginning 
at We = 4.5 a turbulent wake is formed behind the drop in the external liquid and inside the 
drop another toroidal vortex is formed in the back of the drop rotating in the opposite 
direction. The three vortices form a system hydrodynamically consistent with the external 
flow and they are joined on the surface of the drop. Figure 7 shows the flow for Re I = 69, 
Re 2 = 45, We = 4.95 (Fr = i.i, R o = 1.5, R v = 7.85, M = 5"i0 -s, M d = 9.7-10-9). As We in- 
creases the extent of the vortex flow in the external medium and inside the back of the drop 
increases. 

For Re 2 = 60 the distance between curves 6 and 9 (corresponding to Re I = 60 and 0.4; 
see Fig. 3) increases. This implies that the medium making up the drop has a significant 
effect on the rise, in spite of the fact that the density ratio is the same. As We in- 
creases a zone of secondary flow (circles in Fig. 3) forms at a certain distance behind the 
drop (for Re I = 0.4). The vortex motion is weak both inside and outside the drop. The drop 
flattens out, the zone of secondary flow behind it increases, and a depression appears in the 
front part of the drop upon transition into region III. Flow with We = 4.62 (Fr = 1.19, 
R o = 1.4, Rv = 9.1, M = 1.3"10 -5 , M d = 6.58) has the same structure as in Fig. 8. For Re I = 
60 the shape remains symmetri c until the formation of a vortex behind the drop (We = 4.55) 
and after with increasing We. For We = 4.97 (Fr = 1.22, R o = 1.43, R~ = 9.02, M = 1.58.10 -5 , 
M d = 1.55"i0 -s ) the flow is shown in Fig. 9. The pressure on the surface of the drop is 

practically symmetric about the e = ~/2 axis. 

For Re 2 = I00 the calculated flow near a spherical drop is different (curves 8 and I0 
in Fig. 3). When Re I = 0.4 there is secondary flow behind the drop but not directly touch- 
ing it, as in Fig. i. The forward part of the drop flattens out with increasing We and the 
region of secondary flow behind it increases. A depression in the front of the drop appears 
for We ~ 4.5. Figure 8 (We = 5.22, Fr = 1.37, R o = 1.38, R v = 12.19, M = 2.1.10 -6 , M d = 
8.2) shows vortex motion behind the drop and the strength of this vortex exceeds that of the 
vortex inside the drop. 

For Re I = 60 the flow is continuous and the shape of the drop is symmetric up to We 
4.3. A closed turbulent wake appears at We = 4.34 (along with another vortex inside the back 
of the drop). As We increases the vortex behind the drop increases in size (Fig. 9, We = 
5.56, Fr = 1.35, R o = 1.43, Rv = 12.25, M = 2.6.10 -6 , M d = 2-10-8). Figures 8 and 9 illu- 
strates the effect of the medium making up the drop on its rise and shape. The Morton num- 
bers of the drop differ by more than seven orders of magnitude, while R o and R v are close, 
i.e., the external medium is practically the same in the two figures, as is the size of the 
drop. The rise velocities are the same, but the flow structures are very different. 

6. Discussion of the Results. The types of flow obtained from the numerical solution 
of the Navier-Stokes equations are illustrated schematically in Fig. 3. Some explanation 
is required for the graphs in region III. For example a) corresponds to Re I = 60, b) Re I = 
0.4; c) and d) Re 2 = 12; e) and f) Re 2 = i00 for curves 3 and 4 with the same correspondence of Rel 

These pairs of graphs show the type of surface shape for the Morton number of the drop within the 
given interval of M d. For small Re I we have essentially a solid surface with a certain de- 
gree of elasticity, while for large Re I the results are close to the solution for a rising 
bubble and can be used as a model for a vapor bubble. The calculations for Re I = 4 and Re 2 = 
60 and 200 (small We) reflect the properties of a bubble to a greater degree than those of 
a solid particle. Inside the drop the maximum velocity is about half of the rise velocity of 
the drop and the region of secondary flow behind the drop is absent. 

The inclined lines between regions I and II and between II and III are based on calcu- 
lations with Re I = 60 and are close to the results for a bubble [ii]. The values of Fr at 
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corresponding points of Fig. 3 and Fig. 4 of [Ii] differ by about 20%; however, th~ere are 
qualitative differences in the flow: in the case of a drop, there are unsteady oscillations 
of the surface for certain Rez, Re= in region III, which result from the presence of matter 
inside the drop. A discontinuity across the drop can occur only when a new vortex is formed 
inside it. In order for this to be possible sufficiently strong vortex motion must exist 
in the stagnant zone behind the drop, capable of spreading the flow across part of the sur- 
face and creating the conditions for a new "buffer" vortex. 

The curves for different valus of Re I and fixed Re2 join when a depression occurs at 
the forward part of the drop (Re I = 0.4). At this point the rise velocity becomes self 
similar with respect to the medium making up the drop. It is not difficult to show that the 
lines Fr = const for a constant value of M d have the same structure as for a bubble [ii], 
and the inclined line between regions II and III in Fig. 3 passes near the points of con- 
tact of the lines representing the external medium with the lines of constant Fr. The size 
dependence of the rise velocity of a drop of a given liquid in another liquid has a local 
maximum preceding the formation of a turbulent wake behind the drop for external media with 
small M. For M ~ 10-4-10 -2 this dependence has an inflection point resulting from unsteady 
oscillations at the back of the drop. These features occur in the region We = 4-4.5. As 
shown by numerous experimental studies [8] surface oscillations of the drop are observed for 
these values of We. 

As in the case of a rising bubble, the formation of a turbulent wake behind the drop 
leads to self-similar behavior of the rise velocity with respect to one of the hydrodynamic 
parameters: R v for small M (M < 0.004) and R o for larger M. Hence the formation of a vortex 
behind the drop (for small M d) and the depression in the forward part of the drop (for M d 
large compared to M) lead to self-similar behavior of the rise velocity with respect to both 
the medium making up the drop and one of the hydrodynamic parameters R o or Rv. In region I 
(spherical drops) the rise velocity is self-similar with respect to Ro, and for Re 2 ~ 1 it 
is also self-similar with respect to M d. 

For large Re 2 the drop rises along a curved path because of the formation of a turbulent 
wake behind the drop, which in liquids with low viscosity (small M) leads to a loss of sta- 
bility of rectilinear motion. Surface-active matter and impurities on the surface of the 
drop lead to friction on the surface from the liquid flowing over it. The calculations with 
Re = 200 give a qualitative explanation of the unsteady processes accompanying the rise of 
bubbles in distilled water and in alcohol [14] (corresponding to the region near the local 
maximum in the rise velocity). 

The maximum value of the velocity of the liquid inside the drop decreases (in comparison 
with the rise velocity of the drop) with increasing flattening of the drop (increasing We). 
Vortex motion is localized at the surface of the drop. 
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The solutions for Pl/P2 = 0.5 give similar results for the surface deformation and flow 
structure. For the same Rel, Re2, and We the values of Fr are smaller than for the case Pl = 
0.i [9], and the lines of constant Rel, Re 2 lie above the corresponding lines in Fig. 3. 
Hence the entire diagram is shifted upward for p = 0.5. We see from (3.1) that solutions 
can be found for drops with larger M d than for 9 = 0.i, assuming the same external medium. 

Calculations were carried out for intermediate values of the basic parameters. Here all 
of the parameters significantly affect the rise of the drop up to the transition to self- 
similar solutions, where the rise velocity for a given density ratio p depends on a single 
hydrodynamic parameter. 

Finally we note that an exact correspondence between our calculations and those of 
[6, 7] is not possible, since there the flow was studied for a given value of Ft. The basic 
types of flow reported in [7] are consistent with our solutions. The results given here 
and in [6, 7] (from solutions using a different set of dimensionless parameters) therefore 
give a complete picture of the hydrodynamic processes accompanying the rise of a drop. 
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